Le code est ici : L.O.L. - Code
Créée par Marc Vanlindt - CC-BY-SA Belgique 2.0
Le but de cette librairie est de faire en sorte que toutes les primitives 2D puissent être appelées en tant que variables.
Plusieurs fonctions et modules ont donc été réalisés pour les créer mais également pour en créer de nouvelles et les modifier plus en profondeur.
Une fois les primitives utilisées en tant que variables, il est possible d'y appliquer des modifications en principe accessibles qu'aux polygones ou aux vecteurs, ces formes étant les seules dont il est possible de retirer les coordonnées de chaque point le composant.
Attention :
LogoFB= [[4.46567, 4.99666], [3.06433, 4.99666], [3.06433, 0], [0.987666, 0], [0.987666, 4.99666], [0, 4.99666], [0, 6.76134], [0.987666, 6.76134], [0.987666, 7.90467], [1.00769, 8.22956], [1.07504, 8.57716], [1.20063, 8.92712], [1.39537, 9.25909], [1.6702, 9.55271], [2.03602, 9.78764], [2.50376, 9.94352], [3.08433, 10], [4.62167, 9.99402], [4.62167, 8.28068], [3.505, 8.28068], [3.35933, 8.26038], [3.21662, 8.18648], [3.10811, 8.0397], [3.065, 7.80073], [3.065, 6.76073], [4.64833, 6.76073]]; LetterL=[[0,0],[0,70],[22,73],[19,21],[50,25],[48,-1],[0,0]]; LetterO=[[0,35],[6.25,61.25],[25,70],[25,70],[43.75,61.25],[50,35],[50,35],[43.75,8.75],[25,0],[25,0],[6.25,8.75],[0,35]]; blue = [0,0,1,1]; red = [1,0,0,1]; green = [0,1,0,1]; violet = [0.5,0,0.5,1]; yellow = [1,1,0,1]; cyan = [0,1,1,1]; black = [0,0,0,1]; white = [1,1,1,1]; oak = RVB(200,50,90,255); orange = [1,0.5,0,1]; olive = [0.5,0.5,0,1]; sarcelle = [0,0.5,0.5,1]; marine = [0,0,0.5,1]; fuschia = [1,0,1,1]; glass = [1,0,1,0.2]; bleu = [0,0,1,1]; rouge = [1,0,0,1]; vert = [0,1,0,1]; jaune = [1,1,0,1]; noir = [0,0,0,1]; blanc = [1,1,1,1]; gris = [0.5,0.5,0.5,1]; gray = [0.5,0.5,0.5,1]; pink = RVB(255,107,219,255); rose = RVB(255,107,219,255); phi = 1.61803399; aphi = phi-1; biphi = phi+1; angledor = 360/biphi; py = sqrt(0.5); bipy = sqrt(2); pi = 3.141592654; tau = pi*2;
abc=square(); def=cube(); 2D(abc); translate([11,0,0]) 3D(def);
module 2D(a){ polygon(a); } module 3D(a){ if(a[1]!=undef) { polyhedron(a[0],a[1]); } }
Donne un nombre aléatoire entre 0 et n si pos est sur *true* (par défaut) et entre -n et n si pos est sur *false*. s correspond à la valeur utilisée pour générer le nombre aléatoire.
for(i=[1:100]){ translate([random(n=300,s=i,pos=false),random(n=300,s=i*2,pos=false)]) teardrop(); }
function random (n,s,pos) = rands(pos==undef?0:pos==true?0:-n,n,1,s==undef?n:s)[0];
Donne l'hypothénuse en fonction de deux longueurs.
echo(hypo(3,4)); -> ECHO: 5
function hypo (a,b) = sqrt((a*a)+(b*b));
for(i=[0:10]){echo(i," : ",pair(i));} -> ECHO: 0, " : ", true ECHO: 1, " : ", false ECHO: 2, " : ", true ECHO: 3, " : ", false ECHO: 4, " : ", true ECHO: 5, " : ", false ECHO: 6, " : ", true ECHO: 7, " : ", false ECHO: 8, " : ", true ECHO: 9, " : ", false ECHO: 10, " : ", true
function pair (a) = a%2==0?true:false;
abc=[[0,0],[100,100]]; echo(normal(abc)); -> ECHO: [[0, 0], [0.707107, 0.707107]]
function normal (a) = a/(sqrt(a[0]*a[0]+a[1]*a[1]));
abc=ppcm(10,25); def=ppcm(11,17); ghi=ppcm(32,24); echo(abc); echo(def); echo(ghi); ->ECHO: [5,2] -> 5*10 = 2*25 ECHO: [17,11] -> 17*11 = 11*17 ECHO: [3,4] -> 3*32 = 4*24
function ppcm(a,b,q)=let( aa=[for(i=[0:max(a,b)]) each [i*a*(q==undef?1:q)]], bb=[for(i=[0:max(a,b)]) each [i*b*(q==undef?1:q)]], cc=[for(i=[0:max(a,b)]) each [for(j=[1:100]) each aa[i]==bb[j]?bb[j]:""]]) [cc[0]/a,cc[0]/b];
abc=[10,2,9,7,5,6,4,8,3,1]; echo("sum :", sum(abc)); echo("topct :", topct(abc)); echo("moyenne :", moyenne(abc)); echo("invert :", invert(abc)); echo("sort :", sort(abc)); -> ECHO: "sum :", 55 ECHO: "topct :", [0.181818, 0.0363636, 0.163636, 0.127273, 0.0909091, 0.109091, 0.0727273, 0.145455, 0.0545455, 0.0181818] ECHO: "moyenne :", 5.5 ECHO: "invert :", [1, 3, 8, 4, 6, 5, 7, 9, 2, 10] ECHO: "sort :", [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
function sum (a,b=0,c=0,n) = b<(n==undef?len(a):n)?sum(a=a,b=b+1,c=c+a[b],n=n):c; function topct (a) = a/sum(a); function moyenne (a,b=0,c=0) = b<len(a)?sum(a=a,b=b+1,c=c+a[b])/len(a):c; function invert (a) = let(b=[for(i=[0:len(a)-1]) a[(len(a)-1)-i]])b; function sort (a,invert=false) = len(a) == 0 ? [] : let ( b=floor(len(a)/2), c=[for(i=a) if (i<a[b]) i], d=[for(i=a) if (i>a[b]) i], e=[for(i=a) if (i==a[b]) i] ) invert==false?concat(sort(c),e,sort(d)):invert(concat(sort(c),e,sort(d)));
Retourne la longueur entre deux points.
abc=[100,100]; def=[200,200]; echo(length(abc,def)); -> ECHO: 141.421
function length (a,b) = sqrt(((b[0]-a[0])*(b[0]-a[0]))+((b[1]-a[1])*(b[1]-a[1])));
abc=[50,50]; def=[100,100]; ghi=[for(i=[0:10])divide(abc,def,i/10)]; echo(ghi); -> ECHO: [[50, 50], [55, 55], [60, 60], [65, 65], [70, 70], [75, 75], [80, 80], [85, 85], [90, 90], [95, 95], [100, 100]]
function divide(a,b,c) = [a[0]+(b[0]-a[0])*c, a[1]+(b[1]-a[1])*c];
Attention : pour les besoins que j'en ai eu, cette fonction ne “ferme” pas la forme et seul le premier point est inclus, non le dernier!
abc=[50,50]; def=[100,100]; jkl=addpoints(abc,def,5); echo(jkl); -> ECHO: [[50, 50], [58.3333, 58.3333], [66.6667, 66.6667], [75, 75], [83.3333, 83.3333], [91.6667, 91.6667]]
function addpoints(c1,c2,n)=[for(i=[0:n]) each [divide(c1,c2,i/(n+1))]];
abc=[0,0]; def=[100,100]; echo(myangle(abc,def)); ->ECHO: 45
function myangle(a,b) = atan2(b[0]-a[0],b[1]-a[1]);
Join2 n'est pas compatible avec toutes les versions de OpenSCAD.
abc=[0,0]; def=[100,100]; ghi=[200,200]; jkl=[300,300]; echo(join([abc,def,ghi,jkl])); echo(join2([abc,def,ghi,jkl])); ->ECHO: [0, 0, 100, 100, 200, 200, 300, 300] ECHO: [0, 0, 100, 100, 200, 200, 300, 300]
function join(a,c=0,t=[]) = let (u=concat(t,a[c]))c==len(a)?t:join(a=a,c=c+1,t=u); function join2(aa) = [for(i=[0:len(aa)-1] ) each aa[i]];
abc=[[0,0],[1,1],undef,[2,2],[2,2],[3,3],undef,[4,4],[5,5],[5,5]]; echo(clean(abc)); -> ECHO: [[0, 0], [1, 1], [2, 2], [3, 3], [4, 4], [5, 5]]
function clean(a) = [for(i=[0:len(a)-1]) each (a[i]==a[i+1]?"":a[i][0]==undef?"":[a[i]])];
abc=[[0,0],[100,0]]; def=fract(abc,in=false,angle=60,maxit=3,close=false); echo(def); color(vert) trace(abc); color(rouge) trace(def); ->ECHO: [[0, 0], [3.7037, 0], [5.55556, 3.2075], [7.40741, 0], [11.1111, 0], [12.963, 3.2075], [11.1111, 6.415], [14.8148, 6.415], [16.6667, 9.6225], [18.5185, 6.415], [22.2222, 6.415], [20.3704, 3.2075], [22.2222, 0], [25.9259, 0], [27.7778, 3.2075], [29.6296, 0], [33.3333, 0], [35.1852, 3.2075], [33.3333, 6.415], [37.037, 6.415], [38.8889, 9.6225], [37.037, 12.83], [33.3333, 12.83], [35.1852, 16.0375], [33.3333, 19.245], [37.037, 19.245], [38.8889, 22.4525], [40.7407, 19.245], [44.4444, 19.245], [46.2963, 22.4525], [44.4444, 25.66], [48.1481, 25.66], [50, 28.8675], [51.8519, 25.66], [55.5556, 25.66], [53.7037, 22.4525], [55.5556, 19.245], [59.2593, 19.245], [61.1111, 22.4525], [62.963, 19.245], [66.6667, 19.245], [64.8148, 16.0375], [66.6667, 12.83], [62.963, 12.83], [61.1111, 9.6225], [62.963, 6.415], [66.6667, 6.415], [64.8148, 3.2075], [66.6667, 0], [70.3704, 0], [72.2222, 3.2075], [74.0741, 0], [77.7778, 0], [79.6296, 3.2075], [77.7778, 6.415], [81.4815, 6.415], [83.3333, 9.6225], [85.1852, 6.415], [88.8889, 6.415], [87.037, 3.2075], [88.8889, 0], [92.5926, 0], [94.4444, 3.2075], [96.2963, 0], [100, 0]]
function fract(a,angle,in,maxit,it,close)= let( close=close==undef?true:close, a=close==true?a[0]==a[len(a)-1]?a:concat(a,[a[0]]):a, maxit=maxit==undef?3:maxit==0?1:maxit, it=it==undef?0:it, inside=in==undef?1:in==true?1:-1, angle=angle==undef?60:angle, b = [ for ( i = [ 0 : len(a)-2 ] ) [ a[i], divide(a[i],a[i+1],angle/180), divide(a[i],a[i+1],angle/180) + [ sin(myangle(a[i],a[i+1]) + angle*inside) * (length(a[i],a[i+1])/3) , cos(myangle(a[i],a[i+1]) + angle*inside) * (length(a[i],a[i+1])/3) ], divide(a[i],a[i+1],1-(angle/180)), a[i+1]] ] ) it+1==maxit?clean(join2(b)):fract(a=clean(join2(b)),angle=angle,in=in,maxit=maxit,it=it+1,close=close);
abc=[[0,0],[0,100],[100,100]]; def=curve(abc,fn=6); echo(def); color(vert) trace(abc); color(rouge) trace(def); ->ECHO: [[0, 0], [2.77778, 30.5556], [11.1111, 55.5556], [25, 75], [44.4444, 88.8889], [69.4444, 97.2222], [100, 100]]
function curve(table,fn) = let( fn = fn == undef ? 8 : fn, c = [ for ( i = [0:(fn)] ) each [divide(table[0],table[1],1/(fn)*i)]], d = [ for ( i = [0:(fn)] ) each [divide(table[1],table[2],1/(fn)*i)]], e = [ for ( i = [0:(fn)] ) each [divide(c[i],d[i],1/(fn)*i)]]) e;
abc=fractshape(d=50,fn=3,maxit=2,inside=false); def=chaincurve(abc,closed=true,fn=4); echo(def); color(vert) trace(abc); color(rouge) trace(def,dot=true,d=0.5);
function chaincurve(table,fn,closed,detail) = let ( detail=detail==undef?1:detail==0?1:detail*sign(detail)*2+1, closed=closed==undef?true:closed, totaltab=concat(table,[table[0]],closed==true?[table[1]]:"",closed==true?[table[2]]:""), tab = multiplyfaces(totaltab,detail), d = [for (i=[(closed==true?4:2):2:len(tab)-(closed==false?4:2)]) each curve([tab[(i)-1],tab[i],tab[i+1]],fn)], b =table[0], c = table[len(table)-1], a = d ) clean(a);
abc=[[0,0],[100,0]]; for(i=[0:3])echo(doublevector(abc,f=i)); ->ECHO: [[0, 0], [50, 0], [100, 0]] ECHO: [[0, 0], [25, 0], [50, 0], [75, 0], [100, 0]] ECHO: [[0, 0], [12.5, 0], [25, 0], [37.5, 0], [50, 0], [62.5, 0], [75, 0], [87.5, 0], [100, 0]] ECHO: [[0, 0], [6.25, 0], [12.5, 0], [18.75, 0], [25, 0], [31.25, 0], [37.5, 0], [43.75, 0], [50, 0], [56.25, 0], [62.5, 0], [68.75, 0], [75, 0], [81.25, 0], [87.5, 0], [93.75, 0], [100, 0]]
function doublevector(table,f,it=0) = let( f=f==undef?0:f, aa = [for (i=[0:len(table)-1]) each [table[i],divide(table[i],table[i+1],1/2)]] ) it==f?clean(aa):doublevector(clean(aa),f=f,it=it+1); function fractalize(table,force,maxit,seed)= let ( force=force==undef?1:force, maxit=maxit==undef?3:maxit, seed=seed==undef?1:seed, aa= [ for(i=[0:len(table)-2], ab = doublevector([[table[i][0],table[i][1]],[table[i+1][0],table[i+1][1]]],f=maxit)) for(j=ab[0]) each clean([[ab][0],[ab][1]]+[[(random(pos=false,n=force,s=sin(seed)*sin(ab[0])+sin(ab[1]))),(random(pos=false,n=force,s=cos(seed)*cos(ab[0])-sin(ab[1])))],[(random(n=force,s=tan(seed)+sin(ab[0])+2*cos(ab[1]))),(random(n=force,s=cos(seed)+cos(ab[0])-3*cos(ab[1])))]]) ] ) clean(aa);
abc=square([50,100]); def=fractalize(abc,force=1,maxit=4); ghi=chaincurve(def); 2D(def); translate([55,0,0]) 2D(ghi);
function fractalize(table,force,maxit,seed)= let ( force=force==undef?1:force, maxit=maxit==undef?3:maxit, seed=seed==undef?1:seed, aa= [ for(i=[0:len(table)-2], ab = doublevector([[table[i][0],table[i][1]],[table[i+1][0],table[i+1][1]]],f=maxit)) for(j=ab[0]) each clean([[ab][0],[ab][1]]+[[(random(pos=false,n=force,s=sin(seed)*sin(ab[0])+sin(ab[1]))),(random(pos=false,n=force,s=cos(seed)*cos(ab[0])-sin(ab[1])))],[(random(n=force,s=tan(seed)+sin(ab[0])+2*cos(ab[1]))),(random(n=force,s=cos(seed)+cos(ab[0])-3*cos(ab[1])))]]) ] ) clean(aa);
abc=square([10,10],center=true); def=circle(d=10,fn=7); ghi=interpolate(abc,def,step=0,maxstep=1,correct=0,q=1); jkl=interpolate(abc,def,step=1,maxstep=1,correct=0,q=1); echo(len(abc)); echo(len(def)); echo(len(ghi)); echo(len(jkl)); trace(abc,dot=true,d=0.3); translate([15,0,0]) trace(def,dot=true,d=0.3); translate([0,-15,0]) trace(ghi,dot=true,d=0.3); translate([15,-15,0]) trace(jkl,dot=true,d=0.3); ->ECHO: 5 ECHO: 8 ECHO: 29 ECHO: 29
function interpolate(a,b,step,maxstep,correct,q)= let( pp=ppcm(len(a)-1,len(b)-1,q)-[1,1], correct=correct==undef?0:correct, abc=vectranslate(multiplyfaces(a,pp[0]),n=correct==undef?0:correct), def=multiplyfaces(b,pp[1]), aa=[for(i=[0:len(def)]) each [divide(abc[i],def[i],step/(maxstep))]]) (aa);
abc=square([10,10],center=true); echo(len(abc)); for(i=[1:4]){ def=multiplyfaces(abc,i); echo(len(def)); translate([12*(i-1),0,0]) trace(def,d=0.3); } ->ECHO: 5 ECHO: 9 ECHO: 13 ECHO: 17 ECHO: 21
function multiplyfaces(object,n)=let( n=n==undef?1:n==0?0:n, aa=n==0?object:[for(i=[0:len(object)-2]) each addpoints(object[i],object[i+1],n) ]) concat(clean(aa),[object[0]]);
Les primitives 2D peuvent-être appellées de la même manière que celles présentes de base dans openscad.
Mais il est également possibles de faire appel à toutes sous forme de variable :
abc = square([10,20],center=true); square([10,20],center=true); translate ([12,0,0]) 2D(abc);
function square(d,center)=let( center=center==undef?false:center, d=d==undef?[10,10]:d, c1 = center == true ? [-d[0]/2,-d[1]/2] : [ 0, 0], c2 = center == true ? [-d[0]/2, d[1]/2] : [ 0, d[1]], c3 = center == true ? [ d[0]/2, d[1]/2] : [ d[0], d[1]], c4 = center == true ? [ d[0]/2,-d[1]/2] : [ d[0], 0], aa=[c1,c2,c3,c4,c1] ) aa;
abc = circle(d=10,fn=16); def = circle(r=5,fn=8); circle(d=10,$fn=24); translate ([12,0,0]) 2D(abc); translate ([24,0,0]) 2D(def);
function circle(d,r,fn) = let ( fn=fn==undef?16:fn, r=r==undef?d==undef?5:d/2:r, aa=ngon(d=r*2,fn=fn) ) aa;
abc = ellipse([40,20],fn=12); ellipse([20,40],fn=24);; translate ([40,0,0]) 2D(abc);
function ellipse(s,fn) = let ( fn=fn==undef?16:fn, s=s==undef?[10,10*aphi]:s, aa=[for(i =[0:fn] ) [sin(360/fn*i)*s[0],cos(360/fn*i)*s[1]]] ) aa;
abc = star(d1=40,d2=10,fn=12); star(d1=40,d2=30,fn=9); translate ([40,0,0]) 2D(abc);
function star(d1,d2,fn) = let ( d1=d1==undef?10:d1, d2=d2==undef?5:d2, fn=fn==undef?7:fn, aa=[for(i=[0:2*(fn)])[sin(360/(2*fn)*i)*(pair(i)==true?d1:d2),cos(360/(2*fn)*i)*(pair(i)==true?d1:d2)]] ) aa;
abc = roundsquare([15,25],[10,2.5,2.5,10]); roundsquare([20,10],[1,8,8,1]); translate ([22,0,0]) 2D(abc);
function roundsquare(s,d,fn) = let ( fn = fn == undef ? 8:fn, s = s == undef ? [15,20] : s, d = d == undef ? [3,6,3,6] : len(d) == 1 ? [d[0]/2,d[0]/2,d[0]/2,d[0]/2]:len(d)==2?[d[0]/2,d[1]/2,d[1]/2,d[1]/2]:len(d)==3?[d[0]/2,d[1]/2,d[2]/2,d[2]/2]:d[0]==undef?[d/2,d/2,d/2,d/2]:d/2, p1 = [0,0], p2 = [0,d[0]], p3 = [0,s[1]-d[1]], p4 = [0,s[1]], p5 = [d[1],s[1]], p6 = [s[0]-d[2],s[1]], p7 = [s[0],s[1]], p8 = [s[0],s[1]-d[2]], p9= [s[0],d[3]], p10= [s[0],0], p11= [s[0]-d[3],0], p12= [d[0],0], c1=curve([p3,p4,p5],fn=fn), c2=curve([p6,p7,p8],fn=fn), c3=curve([p9,p10,p11],fn=fn), c4=curve([p12,p1,p2],fn=fn), aa=clean(join2([c1,c2,c3,c4,[p3]])) ) aa;
abc = triangle(10,20); triangle(20,10); translate ([17.55,0,0]) 2D(abc);
function triangle(w,h)= let ( h=h==undef?cos(30)*w:h, aa=[[-w/2,0],[0,h],[w/2,0],[-w/2,0]] ) aa;
Où d est le diamètre, a un angle et p une fraction.
Si a et p ont tous les deux une valeurs, seul l'angle sera pris en compte.
abc=piepart(d=50,p=16/100); piepart(d=50,a=60); translate([30,0,0]) 2D(abc);
function piepart(d,a,p) = let ( d=d==undef?10:d/2, a=a==undef?p==undef?90:p>=1?360*1/p:360*p:a, aa=concat([[0,0]],[for(i=[0:a])[-sin(-90+i)*d,cos(-90+i)*d]]) ) aa;
abc=teardrop(25,60,12); def=teardrop(25,15,4); teardrop(25,30,24); translate([30,0,0]) 2D(abc); translate([60,0,0]) 2D(def);
function teardrop(d,a,fn)=let ( d=d==undef?10:d, a=a==undef?30:a, h=d*tan(90-a), fn=fn==undef?16:fn, courbe= [for(i=[0:fn]) [sin(90-a+(360-(90-a)*2)/fn*i)*d/2,cos(90-a+(360-(90-a)*2)/fn*i)*d/2]], aa=concat(courbe,[[0,(cos(90-a)*d/2)+h*sin(90-a)/2]],[[sin(90-a)*d/2,cos(90-a)*d/2]]) ) aa;
abc=ngon(20,4,inside=true); def=ngon(20,4,inside=false); ngon(20,16); translate([25,0,0]) 2D(abc); translate([50,0,0]) 2D(def); translate([25,0,-1]) #circle(d=20); translate([50,0,1]) #circle(d=20);
function ngon(d,fn,inside) = let ( d=d==undef?10:inside==undef?d:inside==true?d:d*((d/2)/(cos(360/fn/2)*d/2)), fn=fn==undef?4:fn, aa=[for(i=[0:fn])[sin(360/fn*i)*d/2,cos(360/fn*i)*d/2]] ) aa;
abc=losange([10,20]); losange([20,10]); translate([20,0,0]) 2D(abc);
function losange(s) = let ( s=s==undef?[10,10*aphi]:s, aa=[for(i =[0:4] ) [sin(360/fn*i)*s[0]/2,cos(360/fn*i)*s[1]/2]] ) aa;
abc=fractshape(d=40,fn=5,it=3,inside=true); def=fractshape(d=40,fn=6,it=3,inside=true); fractshape(d=40,fn=5,it=3,inside=false); translate([50,0,0]) fractshape(d=40,fn=3,it=3,inside=false); translate([0,50,0]) 2D(abc); translate([50,50,0]) 2D(def);
function fractshape(d,fn,inside,maxit)= let( d=d==undef?10:d/2, fn=fn==undef?5:fn, maxit=maxit==undef?3:maxit, inside=inside==undef?true:inside, angle=fn==3?60:fn==4?89:360/fn, points=fract(ngon(d=d*2,fn=fn),maxit=maxit,angle=angle,in=inside) ) points;
abc=cube([10,20,30],center=true); echo(abc); 3D(abc);
function cube(d,center)=let ( d=d==undef?[10,10,10]:d, center=center==undef?false:center, mys=square([d[0],d[1]],center=center), aa=to3D(mys,mys,h=d[2]) ) center==false?aa:translate3D(aa,[0,0,-d[2]/2]);
abc=cylinder(d1=20,d2=0,h=50,fn=16); def=cylinder(d=20,h=50,fn=64,center=true); 3D(abc); translate([25,0,0]) 3D(def);
function cylinder(d,d1,d2,h,fn,center)=let ( d1=d==undef?d1==undef?10:d1:d, d2=d==undef?d2==undef?10:d2:d, h=h==undef?40:h, fn=fn==undef?16:fn, center=center==undef?false:center, myg1=ngon(d=d1,fn=fn), myg2=ngon(d=d2,fn=fn), aa=to3D(myg1,myg2,h=h) ) center==false?aa:translate3D(aa,[0,0,-h/2]);
abc=pointgrid([50,50],n=100); echo(abc); for(i=abc)translate(i) circle(d=1);
function pointgrid(dim,n,seed) =[for(i=[0:n-1])[random(n=dim[0],s=sin(i/n/(seed==undef?1:seed))),random(n=dim[1],s=cos(i*2/n/(seed==undef?1:seed)))]];
abc=[0,0,1,1]; def=[1,0,0,1]; ghi=gradient(abc,def,20); for(i=[0:19]) translate([i,0,0]) color(ghi[i]) cube([1,20,1]);
function gradient(a,b,c) = let ( c=c==undef?1:c, aR=a[0], aV=a[1], aB=a[2], aA=a[3], bR=b[0], bV=b[1], bB=b[2], bA=b[3], mR=(aR-bR)/c, mV=(aV-bV)/c, mB=(aB-bB)/c, mA=(aA-bA)/c, aa=[for(i=[0:c-1]) [a[0]-mR*i,a[1]-mV*i,a[2]-mB*i,a[3]-mA*i]] ) aa;
color(RVB(192,64,128)) cube(); translate([1.1,0,0]) color(RVB(12,64,255,128)) cube(); translate([2.2,0,0]) color(RVB(255,255,0,64)) cube();
function RVB(a,b,c,d)= let( a=a==undef?0.5:1/255*a, b=b==undef?0.5:1/255*b, c=c==undef?0.5:1/255*c, d=d==undef?1:1/255*d, aa=[a,b,c,d] )aa;
Ces objets ne peuvent être appelés sous forme de variables.
Où w est la largeur du trait, c une courbure ouvant être appliqué aux angles à l'intérieur du motif, n le nombre de cellules voules et seed la graine à utiliser pour l'aléatoire.
voronoi([1000,500],w=4,c=0,n=100,seed=1123); translate([1050,0,0]) voronoi([1000,500],w=5,c=120,n=12,seed=614); translate([0,-650,0]) voronoi([1000,500],w=3,c=1,n=200,seed=614); translate([1050,-650,0]) voronoi([1000,500],w=3,c=1,n=200,seed=615);
module voronoi(dim, w, c, n, seed){ fn=fn==undef?32:fn; n=n==undef?100:n; dim=dim==undef?[1000,500]:dim; table=pointgrid([dim[0],dim[1]],n=n,seed=seed); c=c==undef?0:c; t=table[0][0]+table[0][1]; w=w==undef?1:w; seed=seed==undef?1/fn*n*c/w:seed; outline(w=w*2,t="in") square(dim); difference(){ square(dim); cnc(-c/2) for (p=table){ intersection_for(p2=table){ if (p!=p2){ translate((p+p2)/2 -normal(p2-p)*w){ rotate([0,0,-myangle(p,p2)]) translate([-t,-t]) square([2*t, t]); }}}}}}
abc=[[0,0],[sin(30)*10,cos(30)*10],[10,0]]; trace(abc); translate([15,0,0]) trace(abc,dot=false,fn=16); translate([30,0,0]) trace(abc,dot=true,dotfn=6); translate([0,15,0]) trace(abc, dot=true,dotfn=6,tr=false); translate([15,15,0]) trace(abc,d=0.5,dot=true,dotfn=6,tr=true,d2=3);
module trace(table,d,fn,dot,dotfn,tr,d2){ tr=tr==undef?true:tr; fn=fn==undef?8:dot==true?4:fn; dotfn=dotfn==undef?16:dotfn; dot=dot==undef?true:dot; d=d==undef?1:d; d2=d2==undef?d*2:d2; for(i=[0:len(table)-2]){ if(tr==true) { hull(){ translate(table[i]) circle(d=d,$fn=fn); translate(table[i+1]) circle(d=d,$fn=fn); } } if(dot==true){ translate(table[i]) circle(d=d2,$fn=dotfn);} if(dot==true){ translate(table[i+1]) circle(d=d2,$fn=dotfn);} } }
abc=square([50,50],center=true); #translate([0,0,2]) 2D(abc); outline(w=3) 2D(abc); #translate([55,0,2]) 2D(abc); translate([55,0,0]) outline(w=3,t="in") 2D(abc); #translate([110,0,2]) 2D(abc); translate([110,0,0]) outline(w=3,t="out") 2D(abc);
module outline (w,t){ w=w==undef?1:w; t=t==undef?"on":t; difference() { offset(t=="out"?w:t=="in"?0:w/2) children(); offset(t=="out"?0:t=="in"?-w:-w/2) children(); } }
menger(d=50,maxit=5);
module menger(d,maxit,it){ let(it=it==undef?0:it) if(it==maxit){ square([d,d]); } else{ union(){ menger(d=d/3+0.001,maxit=maxit,it=it+1); translate([d/3,0]) menger(d=d/3+0.001,maxit=maxit,it=it+1); translate([d/3*2,0]) menger(d=d/3+0.001,maxit=maxit,it=it+1); translate([0,d/3]) menger(d=d/3+0.001,maxit=maxit,it=it+1); translate([d/3*2,d/3]) menger(d=d/3+0.001,maxit=maxit,it=it+1); translate([0,d/3*2]) menger(d=d/3+0.001,maxit=maxit,it=it+1); translate([d/3,d/3*2]) menger(d=d/3+0.001,maxit=maxit,it=it+1); translate([d/3*2,d/3*2]) menger(d=d/3+0.001,maxit=maxit,it=it+1); }}}
tube(d1=10,d2=8,h=10,$fn=8); translate([15,0,0]) tube(d1=15,d2=10,h=5,$fn=64);
module tube (d1,d2,h,center){ d1=d1==undef?10:d1; d2=d2==undef?8:d2; h=h==undef?30:h; center=center==undef?false:center; translate([0,0,center==true?-h/2:0]) difference(){ cylinder(d=d1,h=h); translate([0,0,-1]) cylinder(d=d2,h=h+2); } }
coude(d1=10,d2=6,$fn=64); translate([0,15,0]) coude(d1=10,d2=9,a=45,$fn=64); translate([0,30,0]) coude(d1=10,d2=5,a=67.5,$fn=64);
module coude(d1,d2,a){ d1=d1==undef?10:d1; d2=d2==undef?8:d2; a=a==undef?90:a<=-90?-90:a>=90?90:a; difference(){ union(){ cylinder(d=d1,h=d1/2); translate([0,0,d1/2]) sphere(d=d1); translate([0,0,d1/2]) rotate([0,a,0]) cylinder(d=d1,h=d1/2); } union(){ translate([0,0,-1]) cylinder(d=d2,h=d1/2+1); translate([0,0,d1/2]) sphere(d=d2); translate([0,0,d1/2]) rotate([0,a,0]) cylinder(d=d2,h=d1/2+1); } } }
bone(h=50,d1=20,d2=14.14214,c=80,q=128); translate([30,0,0]) bone(h=50,d1=20,d2=14.14214,c=25,q=128); translate([60,0,0]) bone(h=50,d1=20,d2=5,c=60,q=128);
module bone(h,d1,d2,c,q){ h = h == undef ? 50 : h; d1 = d1 == undef ? 20 : d1; d2 = d2 == undef ? 14.14214 : d2; c = c == undef ? 40 : c; q = q == undef ? 128 : q; rotate_extrude(){ rotate_extrude_correct(){ cnc((c)*2,$fn=q) { circle(d=d1,$fn=q); translate([0,h]) circle(d=d2,$fn=q); } } } }
roundcube(); translate([65,0,0]) roundcube(s=[20,30,50], b=[2,4,6,8],t=[10,12,14,16],q=64); translate([95,0,0]) roundcube(s=[70,30,40], b=[5,5,5,5],t=[35,35,35,35],q=64);
module roundcube (s,b,t,center,q){ s=s==undef?[50,40,30]:s; b=b==undef?[5,5,5,5]:b; t=t==undef?[20,20,20,20]:t; center=center==undef?false:center; translate([center==true?-s[0]/2:0,center==true?-s[1]/2:0,center==true?-s[2]/2:0]) hull(){ translate([b[0]/2,b[0]/2,b[0]/2]) sphere(d=b[0]); translate([s[0]-b[1]/2,b[1]/2,b[1]/2]) sphere(d=b[1]); translate([s[0]-b[2]/2,s[1]-b[2]/2,b[2]/2]) sphere(d=b[2]); translate([b[3]/2,s[1]-b[3]/2,b[3]/2]) sphere(d=b[3]); translate([t[0]/2,t[0]/2,s[2]-t[0]/2]) sphere(d=t[0]); translate([s[0]-t[1]/2,t[1]/2,s[2]-t[1]/2]) sphere(d=t[1]); translate([s[0]-t[2]/2,s[1]-t[2]/2,s[2]-t[2]/2]) sphere(d=t[2]); translate([t[3]/2,s[1]-t[3]/2,s[2]-t[3]/2]) sphere(d=t[3]); } }
Attention, la prévisualisation amène des erreurs d'affichage. Mais le résultat final est bon.
menger3D(d=100,maxit=3);
module menger3d(it=1,d,maxit){ if (it==maxit){ cube([d,d,d],center=true); } if (it<=maxit){ union(){ for (i=[-1:1]){ translate([d/3,d/3,d/3*i]) rotate([0,90,0]) menger3d(it=it+1,d=d*1/3,maxit=maxit); translate([-d/3,d/3,d/3*i]) rotate([0,90,0]) menger3d(it=it+1,d=d*1/3,maxit=maxit); } translate([0,d/3,d/3]) rotate([0,90,0]) menger3d(it=it+1,d=d*1/3,maxit=maxit); translate([0,d/3,-d/3]) rotate([0,90,0]) menger3d(it=it+1,d=d*1/3,maxit=maxit); for (i=[-1:1]){ translate([d/3,-d/3,d/3*i]) rotate([0,90,0]) menger3d(it=it+1,d=d*1/3,maxit=maxit); translate([-d/3,-d/3,d/3*i]) rotate([0,90,0]) menger3d(it=it+1,d=d*1/3,maxit=maxit); } translate([0,-d/3,d/3]) rotate([0,90,0]) menger3d(it=it+1,d=d*1/3,maxit=maxit); translate([0,-d/3,-d/3]) rotate([0,90,0]) menger3d(it=it+1,d=d*1/3,maxit=maxit); translate([d/3,0,d/3]) rotate([0,90,0]) menger3d(it=it+1,d=d*1/3,maxit=maxit); translate([d/3,0,-d/3]) rotate([0,90,0]) menger3d(it=it+1,d=d*1/3,maxit=maxit); translate([-d/3,0,d/3]) rotate([0,90,0]) menger3d(it=it+1,d=d*1/3,maxit=maxit); translate([-d/3,0,-d/3]) rotate([0,90,0]) menger3d(it=it+1,d=d*1/3,maxit=maxit); }}}
jcube(d=100,maxit=4);
module jcube(it,d,maxit){ it=it==undef?1:it; union() { if(it==maxit) { cube([d,d,d],center=true); } if(it<=maxit) { translate([d/2,d/2,d/2]) translate([-d/2*(sqrt(2)-1),-d/2*(sqrt(2)-1),-d/2*(sqrt(2)-1)]) jcube(it=it+1,maxit=maxit,d=d*(sqrt(2)-1)); translate([-d/2,d/2,d/2]) translate([d/2*(sqrt(2)-1),-d/2*(sqrt(2)-1),-d/2*(sqrt(2)-1)]) jcube(it=it+1,maxit=maxit,d=d*(sqrt(2)-1)); translate([d/2,-d/2,d/2]) translate([-d/2*(sqrt(2)-1),d/2*(sqrt(2)-1),-d/2*(sqrt(2)-1)]) jcube(it=it+1,maxit=maxit,d=d*(sqrt(2)-1)); translate([-d/2,-d/2,d/2]) translate([d/2*(sqrt(2)-1),d/2*(sqrt(2)-1),-d/2*(sqrt(2)-1)]) jcube(it=it+1,maxit=maxit,d=d*(sqrt(2)-1)); translate([d/2,d/2,-d/2]) translate([-d/2*(sqrt(2)-1),-d/2*(sqrt(2)-1),d/2*(sqrt(2)-1)]) jcube(it=it+1,maxit=maxit,d=d*(sqrt(2)-1)); translate([-d/2,d/2,-d/2]) translate([d/2*(sqrt(2)-1),-d/2*(sqrt(2)-1),d/2*(sqrt(2)-1)]) jcube(it=it+1,maxit=maxit,d=d*(sqrt(2)-1)); translate([d/2,-d/2,-d/2]) translate([-d/2*(sqrt(2)-1),d/2*(sqrt(2)-1),d/2*(sqrt(2)-1)]) jcube(it=it+1,maxit=maxit,d=d*(sqrt(2)-1)); translate([-d/2,-d/2,-d/2]) translate([d/2*(sqrt(2)-1),d/2*(sqrt(2)-1),d/2*(sqrt(2)-1)]) jcube(it=it+1,maxit=maxit,d=d*(sqrt(2)-1)); translate([-d/2,-d/2,0]) translate([d/2*(1-(2*(sqrt(2)-1))),d/2*(1-(2*(sqrt(2)-1))),0]) jcube(it=it+1,maxit=maxit,d=d*(1-(2*(sqrt(2)-1)))); translate([-d/2,d/2,0]) translate([d/2*(1-(2*(sqrt(2)-1))),-d/2*(1-(2*(sqrt(2)-1))),0]) jcube(it=it+1,maxit=maxit,d=d*(1-(2*(sqrt(2)-1)))); translate([d/2,-d/2,0]) translate([-d/2*(1-(2*(sqrt(2)-1))),d/2*(1-(2*(sqrt(2)-1))),0]) jcube(it=it+1,maxit=maxit,d=d*(1-(2*(sqrt(2)-1)))); translate([d/2,d/2,0]) translate([-d/2*(1-(2*(sqrt(2)-1))),-d/2*(1-(2*(sqrt(2)-1))),0]) jcube(it=it+1,maxit=maxit,d=d*(1-(2*(sqrt(2)-1)))); translate([-d/2,0,-d/2]) translate([d/2*(1-(2*(sqrt(2)-1))),0,d/2*(1-(2*(sqrt(2)-1)))]) jcube(it=it+1,maxit=maxit,d=d*(1-(2*(sqrt(2)-1)))); translate([-d/2,0,d/2]) translate([d/2*(1-(2*(sqrt(2)-1))),0,-d/2*(1-(2*(sqrt(2)-1)))]) jcube(it=it+1,maxit=maxit,d=d*(1-(2*(sqrt(2)-1)))); translate([d/2,0,-d/2]) translate([-d/2*(1-(2*(sqrt(2)-1))),0,d/2*(1-(2*(sqrt(2)-1)))]) jcube(it=it+1,maxit=maxit,d=d*(1-(2*(sqrt(2)-1)))); translate([d/2,0,d/2]) translate([-d/2*(1-(2*(sqrt(2)-1))),0,-d/2*(1-(2*(sqrt(2)-1)))]) jcube(it=it+1,maxit=maxit,d=d*(1-(2*(sqrt(2)-1)))); translate([0,-d/2,-d/2]) translate([0,d/2*(1-(2*(sqrt(2)-1))),d/2*(1-(2*(sqrt(2)-1)))]) jcube(it=it+1,maxit=maxit,d=d*(1-(2*(sqrt(2)-1)))); translate([0,-d/2,d/2]) translate([0,d/2*(1-(2*(sqrt(2)-1))),-d/2*(1-(2*(sqrt(2)-1)))]) jcube(it=it+1,maxit=maxit,d=d*(1-(2*(sqrt(2)-1)))); translate([0,d/2,-d/2]) translate([0,-d/2*(1-(2*(sqrt(2)-1))),d/2*(1-(2*(sqrt(2)-1)))]) jcube(it=it+1,maxit=maxit,d=d*(1-(2*(sqrt(2)-1)))); translate([0,d/2,d/2]) translate([0,-d/2*(1-(2*(sqrt(2)-1))),-d/2*(1-(2*(sqrt(2)-1)))]) jcube(it=it+1,maxit=maxit,d=d*(1-(2*(sqrt(2)-1)))); }}}
Fonctionne pour les objets 2D et 3D :
ring(d=20,n=7) circle(); translate([25,0,0]) ring(d=20,n=9) sphere();
module ring(d,n){ d=d==undef?10:d; n=n==undef?5:n; for(i=[0:n-1]){ rotate([0,0,360/n*i]){ translate([d/2,0,0]) children(); } } }
fibo(s=1,n=512,r=true) circle(d=5); translate([1200,0,0]) fibo(s=1,n=512,r=false) circle(d=20); translate([600,600,0]) fibo(s=0.5,n=512,r=false) circle(d=20);
module fibo(s,n,r){ r=r==undef?true:r; s=s==undef?1:s; n=n==undef?128:n; for(i=[1:n]){ rotate([0,0,angledor*i]) translate([s*i,0,0]) scale(r==true?s+pow(1.003,i):1) children(); } }
Simule l'utilisation d'une CNC où d est le diamètre de la mèche.
show=true/false permet de voir “ce que donne” la différence entre la forme originelle et celle qui serait coupée à la CNC.
difference(){ square([10,20],center=true); square([8,18],center=true); } translate([12,0,0])cnc(d=4,show=true){ difference(){ square([10,20],center=true); square([8,18],center=true); }} translate([24,0,0])cnc(d=4,show=false){ difference(){ square([10,20],center=true); square([8,18],center=true); }}
module cnc(d,show){ show=show==undef?false:show; d = d == undef ? 3:d; if(show==false){ offset(-d/2,$fn=32) offset(d/2,$fn=32) children(); } else { color("green") linear_extrude(1) children(); color("red") linear_extrude(0.5) difference() { offset(-d/2,$fn=32) offset(d/2,$fn=32) children(); children(); } } }
chull(m=true){ sphere(d=1,$fn=16); translate([10,10,00]) sphere(d=1,$fn=16); translate([20,0,00]) sphere(d=1,$fn=16); translate([30,0,00]) sphere(d=1,$fn=16); translate([30,-10,00]) sphere(d=1,$fn=16); translate([0,-10,00]) sphere(d=1,$fn=16); } translate([0,-25,0]) chull(m=false){ sphere(d=1,$fn=16); translate([10,10,00]) sphere(d=1,$fn=16); translate([20,0,00]) sphere(d=1,$fn=16); translate([30,0,00]) sphere(d=1,$fn=16); translate([30,-10,00]) sphere(d=1,$fn=16); translate([0,-10,00]) sphere(d=1,$fn=16); }
module chull(m){ union() for(i=[0:$children-2]){ hull(){ children(m==true?0:i); children(i+1); } } }
grid([500,500],x=3,y=5){ ellipse([10,30]); ellipse([30,10]); }
module grid (dim,x,y){ dim=dim==undef?[100,100]:dim; x=x==undef?10:x; y=y==undef?10:y; for(i=[1:x-1]) translate([i*dim[0]/x,0,0]) rotate([-90,0,0]) linear_extrude(dim[1]) children(); for(i=[1:y-1]) translate([0,i*dim[1]/y,0]) rotate([-90,0,-90]) linear_extrude(dim[0]) children(); }
moebius(fn=64){ square([1,10],center=true);} translate([50,0,0]) moebius(fn=64,t=2){ square([1,10],center=true);} translate([0,0,50]) moebius(fn=64,t=1.5){ square([1,10],center=true);} translate([50,0,50]) moebius(fn=64,t=1.5){ ellipse([1,10]); ellipse([10,1]);}
module moebius(d,t,fn){ // version 2.0 fn = fn == undef ? 128 :fn; d = d == undef ? 30 :d; t = t == undef ? 0.5 :t; union(){ for(j=[0:$children-1]) { for(i=[1:fn]){ hull(){ rotate([0,360/fn*i,0]) translate([d/2,0,0]) rotate([0,0,i*(360*t)/fn]) linear_extrude(0.1) children(j); rotate([0,360/fn*(i+1),0]) translate([d/2,0,0]) rotate([0,0,(i+1)*(360*t)/fn]) linear_extrude(0.1) children(j); } } } } }
pythatree(d="z",h=50,maxit=5,r1=0,r2=0) bone(h=50,d1=20,d2=14.14214,c=160,$fn=32); translate([200,0,0])pythatree(d="z",h=50,maxit=7,r1=0,r2=90) bone(h=50,d1=20,d2=14.14214,c=160,$fn=32);
pythatree(d="y",h=5,maxit=9) square([1,5]);
module pythatree (a,h,sp,maxit,b,r1,r2,s,d){ a = a == undef ? 45 : a; h = h == undef ? 1 : h; sp = sp == undef ? 0 : sp; maxit = maxit == undef ? 3 : maxit; b = b == undef ? 1 : b; r1 = r1 == undef ? 0 : r1; r2 = r2 == undef ? 0 : r2; s = s == undef ? py : s; d = d == undef ? "y" : d; children(); if(b<=maxit) { translate([d=="x"?h:d=="y"?sp:-sp, d=="x"?-sp:d=="y"?h:0, d=="x"?0:d=="y"?0:h]) rotate([d=="x"?0:d=="y"?r2:0, d=="x"?r2:d=="y"?0:-a, d=="x"?-a:d=="y"?-a:r2]) scale([s,s,s]) pythatree(a=a,h=h,sp=sp,maxit=maxit,b=b+1,r1=r1,r2=r2,s=s,d=d) { children(); }; translate([d=="x"?h:d=="y"?-sp:sp, d=="x"?sp:d=="y"?h:0, d=="x"?0:d=="y"?0:h]) rotate([d=="x"?0:d=="y"?r1:0, d=="x"?r1:d=="y"?0:a, d=="x"?a:d=="y"?a:r1]) scale([s,s,s]) pythatree(a=a,h=h,sp=sp,maxit=maxit,b=b+1,r1=r1,r2=r2,s=s,d=d) { children(); }; } }
abc=chaincurve(center(LetterL),3); 2D(abc); translate([60,0,0]) 2D(mirror(abc,x=true)); translate([0,-80,0]) 2D(mirror(abc,y=true)); translate([60,-80,0]) 2D(mirror(abc,x=true,y=true));
function mirror(a,x,y)=let( xx=x==undef?1:x==true?-1:1, yy=y==undef?1:y==true?-1:1, aa=[ for(i=[0:len(a)-1]) each [ [a[i][0]*xx,a[i][1]*yy] ] ] )aa;
abc=cube([10,10,10],center=true); def=translate3D(rescale3D(abc,2),[10,20,30]); 3D(abc); 3D(def);
function translate3D(a,b)=[[for(i=[0:len(a[0])-1]) a[0][i]+b],a[1]]; function rescale3D(a,s)= [[for(i=[0:len(a[0])-1]) a[0][i]*s],a[1]];
skew(XY=0.5) cube([25,25,25],center=true); translate([50,0,0]) skew(XZ=0.5) cube([25,25,25],center=true); translate([0,-50,0]) skew(YX=0.5) cube([25,25,25],center=true); translate([50,-50,0]) skew(YZ=0.5) cube([25,25,25],center=true); translate([0,-100,0]) skew(ZX=0.5) cube([25,25,25],center=true); translate([50,-100,0]) skew(ZY=0.5) cube([25,25,25],center=true);
module skew(XY,XZ,YX,YZ,ZX,ZY){ matrice=[ [1,XY,XZ,0], //[redimX, skewXY, skewXZ,translateX] [YX,1,YZ,0], //[SkewYX,RedimY,SkewYZ,translateY] [ZX,ZY,1,0] //[SkewZX, SkewZY,redimZ,TranslateZ] ]; multmatrix(matrice){ children(); } }
abc=ngon(d=50,fn=3); def=chaincurve(koch(abc,maxit=2)); my3Dobject=simple3D(abc,def,h=70); 3D(my3Dobject);
function simple3D(a,b,h,bottom,top,angle,correct) = let ( angle=angle==undef?0:angle, correct=correct==undef?0:correct, bottom=true, top=true, c=2Drot(interpolate(L1,L2,maxstep=1,step=0,correct=correct,q=1),angle), d=2Drot(interpolate(L1,L2,maxstep=1,step=1,correct=correct,q=1),angle), aa=[ for(i=[0:len(c)]) each[[c[i][0],c[i][1],0],[d[i][0],d[i][1],h]] ], bb=[ for(i=[0:1:len(aa)]) each [[i,i+1,i+2],[i+1,i+3,i+2]] ], cc=bottom==true?[ for(i=[0:2:len(aa)]) each [i] ]:[], dd=top==true?[ for(i=[0:2:len(aa)]) each [len(aa)-1-i] ]:[], ee=concat(bb,[cc],[dd]) ) [clean(aa),clean(ee)];
Attention : Ce module générera énormément d'erreurs mais le résultat final devrait être bon. a est la première forme. b est la seconde forme. h la hauteur de la forme. correct permet de corriger de quel point à quel point se fait le raccords afin d'éviter les rotations.
Ce module est sujet à beaucoup de bugs!!! Merci de préférer tant que maintenant le passage par la fonction simple3D()
Les autres variables seron documentées plus tard.
abc=ngon(d=40,fn=5); def=fractshape(d=40,fn=5,it=3,inside=true); ghi=chaincurve(def); 2Dto3D(abc,def,segment=4,h=20); translate([50,0,0]) 2Dto3D(abc,ghi,segment=8,h=20); translate([0,50,0]) 2Dto3D(circle(d=40,fn=16),square([20,20],center=true),h=20,segment=16,correct=0); translate([50,50,0]) 2Dto3D(circle(d=40,fn=16),square([20,20],center=true),h=20,segment=4,correct=6);
module 2Dto3D(a,b,h,segment,correct,quality,rotation){ angle=rotation==undef?0:rotation/segment; quality=quality==undef?1:quality; he=h==undef?64:h; mm=segment==undef?16:segment; aabc=a==undef?ngon(d=50,fn=3):a; adef=b==undef?chaincurve(koch(ngon(d=50,fn=3),maxit=1),fn=4):b; correct=correct==undef?0:correct; union(){ for(i=[0:mm-1]){ my3Dobject=to3D( 2Drot(interpolate(aabc,adef,maxstep=mm,step=i,correct=correct,q=quality),i*angle), 2Drot(interpolate(aabc,adef,maxstep=mm,step=i+1,correct=correct,q=quality),(i+1)*angle), h=he/mm, top=i==mm-1?true:true, bottom=i==0?true:true); translate([0,0,i*he/mm]) color([1/mm*i,1-(1/mm*i),1,1]) union(){ polyhedron(my3Dobject[0],my3Dobject[1]); polyhedron(my3Dobject[0],my3Dobject[1]);} } } }